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INTRODUCTION

Ras is an important cellular switch and alternates between an active GTP-bound state and an
inactive GDP-bound state. It transmits growth-promoting signals from the plasma membrane to the
nucleus via one of several pathways including the Raf/MEK/ERK transduction pathway (1).
Activating mutations of the ras gene are common in some cancers and occur in about 90% of
pancreatic cancers, 50% of colon cancers, and 50% of thyroid cancers. However, activating ras
mutations are infrequent in other cancers, including breast cancers where only about 5% of tumors
exhibit a ras mutation (1; 2). The low percentage of breast cancers with activating ras mutations has
suggested that Ras does not play an important pathogenetic role in this cancer (3). Yet several growth
factor receptors which relay signals through Ras are overexpressed in breast cancer suggesting that
Ras may be activated in some breast cancers through an "upstream" mechanism (4-10). Two of these
growth factor receptors are the epidermal growth factor (EGF) receptor and the ErbB-2/neu/HER-2
receptor. These two receptors are overexpressed in 20-50% of human breast cancers and their
increased expression predicts shortened disease-free survival and overall survival (4; 5; 11; 12). In
addition, a mutated constitutively-active EGF receptor has been reported in breast cancer and the c-
FMS/colony stimulating factor-1 (CSF-1) receptor, which can also signal through Ras, is expressed
in ~15% of breast cancers but not in normal breast tissue (13-15). Although high expression of the
EGF and ErbB-2 receptors correlates with a poor prognosis in breast cancer, it is not known whether
sufficient ligands are present in breast tissue to activate the receptors and which of the signal
transduction pathways activated by the receptors in cultured cells are activated in primary cancers (4;
5:11; 12).

BODY

During the tenure of the grant, we analyzed 20 breast cancer samples for Ras activation as well
as EGF and ErbB-2 receptor expression; the breast cancers were compared to seven normal breast
samples and two fibroadenomas. These data were presented in abstract form at the Era of Hope
Meeting in Atlanta, June, 2000 and were recently published: Breast Cancer Research and Treatment
62: 51-62, 2000. We define abnormal Ras activation as activation levels that are greater than two
standard deviations above the mean of the normal samples we have analyzed. In the breast cancers
we found a striking correlation between increased Ras activation and overexpression of the EGF
and/or ErbB-2 receptors: 11 of the breast cancers showed increased Ras activation and seven of these
overexpressed both the EGF and ErbB-2 receptors while the other four with increased Ras activation
overexpressed one of these two receptors (Group B cancers in Fig. 2 of the published paper). These
data are markedly different than data from the nine cancers with normal Ras activation levels in
which none overexpressed the EGF receptor and only one overexpressed the ErbB-2 receptor
(Group A cancers in Fig. 2 of the paper). Thus, there was a remarkable correlation between
increased expression of the EGF and/or ErbB-2 receptors and increased Ras activation. The vast
majority of ras mutations that occur in breast cancer are in K-ras, codon 12; we did not find a
mutation at this site in any of the cancers, consistent with the low rate of activating ras mutations
in breast cancer, and thus the increased Ras activation we observed was not from a genetic ras
mutation. None of the cancers we analyzed expressed the truncated constitutively active EGF




receptor or the c-FMS/CSF-1 receptor. We found increased activation of mitogen-activated protein
(MAP) kinase in the cancers with increased Ras activation, indicating that Ras signals through the
Raf kinase, MEK, MAP kinase pathway in breast cancer.

In addition to studying primary breast cancers, we also studied three different breast cancer
cell lines, one without any known genetic mutations, one with an activating K-ras mutation and
one which overexpressed the ErbB-2 receptor. We found that the degree of Ras activation in the
cancers with high Ras activation was similar to the cell line with the K-ras mutation and the cell
line overexpressing the ErbB-2 receptor. Ras activation in the cancers with low Ras activation was
similar to that found in the cell line without a known genetic mutation. Thus, there was a good
correlation between the data from the primary cancers and the data from the cell lines. In addition,
in the cell line overexpressing the ErbB-2 receptor, growth factors were required to activate Ras;
since we found Ras to be highly activated in cancers overexpressing the EGF and/or ErbB-2
receptors, this indicates there are sufficient ligands in breast tissue in vivo to activate Ras.

This study provides a strong basis for treating selected breast cancers with inhibitors of the
Ras/MAP kinase pathway. In addition to pharmacologic agents, there are antibodies and oncolytic
viruses which target the Ras/MAP kinase pathway suggesting that these various approaches could
be of value in the treatment of breast cancer (16; 17). As part of another research project, we have
developed an instrument to automate our method for measuring Ras activation in primary cancers
and we are now ready to test the prototype instrument. Ultimately, this instrument should allow
measuring Ras activation in clinical laboratories and the work fiinded by the present grant proposal
will, therefore, represent the initial studies of Ras activation in breast cancer.

Although it was not part of the original grant application, we have also begun to assess the
activation state of Rho in breast cancers. Rho proteins are related to Ras and like Ras cycle
between an active GTP-bound state and an inactive GDP-bound state. They are necessary for ras-
transformation and regulate cell morphology, adhesion, and motility through cytoskeletal dynamics
and play an important role in carcinogenesis (18). Rho proteins are involved in the changes in cell
attachment and migration that are required for tumor cell invasion and metastasis (19; 20). Thus,
we decided to assess Rho activation in primary and metastatic breast cancers. In order to perform
these measurements, we first had to develop an assay for measuring Rho activation. Unlike for
Ras, a good immunoprecipitating antibody against Rho is not available. Thus, we have used the
Rho binding domain of the Rho effector Rhotekin (21; 22). This protein binds with a very high
affinity to activated Rho, i.e., Rho in the GTP-bound state but not to Rho in the unactivated GDP-
bound state. In primary breast samples, measuring active Rho would not be sufficient since tissue
heterogeneity could lead to markedly different amounts of Rho in different samples. We,
therefore, devised a method to measure GDP-bound Rho which takes advantage of the fact that the
exchange of GTP for GDP on Rho takes place very quickly in the absence of magnesium. Thus,
we split the samples in half and incubate one half with exogenous GTP; since we extract the cells
in Triton X-114, excess GTP can be removed by three rapid and successive phase extractions. We
have found this method to be highly accurate in pilot studies performed on the breast cancer cell
lines described above. To date, we have assessed Rho activation in benign breast tissue from four
subjects and in five breast cancers. Interestingly, Rho was much more activated in four of the five
cancers compared to the two normal breast samples. Clearly, much more work needs to be done
using this newly-developed technology. Recent work has shown that farnesyl transferase
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inhibitors, which were originally developed as Ras inhibitors, may actually function by inhibiting
Rho (23; 24). Thus, assessing a tumor for its degree of Rho activation may provide data
concerning whether a farnesyl transferase inhibitor would be of wuse in treating the cancer.
Determining which breast cancers might be treated with a farnesyl transferase inhibitor was one
of the objectives of the original grant application.

KEY RESEARCH ACCOMPLISHMENTS

» Ras is activated in primary human breast cancers in the absence of a mutation in the ras
gene '

» Ras activation occurs in tumors with overexpression of the EGF and/or ErbB-2 receptors

» Ras activation in breast cancer correlates with MAP kinase activity

« In a human breast cancer cell line overexpressing the ErbB-2 receptor, Ras activation
occurred only when the cells were exposed to sufficient ligand

s In breast cancers overexpressing the EGF or ErbB-2 receptors, there are sufficient
ligand in vivo to activate the receptors and, thereby, activate Ras.

 Rho may be activated in a significant number of breast cancers

REPORTABLE OUTCOMES

A paper has been published (Breast Cancer Research and Treatment 62: 51-62, 2000)
describing the results from this study; it is provided in the Appendix. In addition, an abstract was
presented at the Era of Hope Meeting, Atlanta, Georgia, June, 2000.

CONCLUSIONS

This work shows definitively that Ras is activated in approximately half of all human breast
cancers. This is an important finding because it indicates that patients who have tumors with high
Ras activation are candidates for therapies aimed at Ras or other protein targets in the Ras/MAP
kinase pathway. Once the method for measuring Ras activation becomes automated, assessing Ras
activation in tumors may become important clinical information.
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Ras activation in human breast cancer
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Summary

Genetic ras mutations are infrequent in breast cancer but Ras may be pathologically activated in breast cancer by
overexpression of growth factor receptors which signal through Ras. Using a highly sensitive, coupled enzymatic
assay, we measured Ras activation in 20 breast cancers, two fibroadenomas, and seven normal breast samples.
Ras was highly activated compared to benign tissue in 11 of the 20 cancers; 7 of these 11 cancers expressed both
the epidermal growth factor (EGF) and ErbB-2/neu/HER-2 receptors with the remaining four cancers with high
Ras activation expressing one of these two receptors. In the other nine cancers, Ras activation was similar to that
observed in benign breast tissue with none of these cancers expressing the EGF receptor while one expressed the
ErbB-2 receptor. None of the cancers tested had an activating K-ras mutation nor did any of the cancers express a
truncated EGF receptor or the c-FMS receptor. The activity of mitogen-activated protein (M AP) kinase was high in
the cancers, and reflected the degree of Ras activation. In cultured mammary tumor cell lines, we showed that Ras
activation was ligand dependent in cells overexpressing the ErbB-2 receptor. Thus, Ras was abnormally activated
in breast cancers overexpressing the EGF and/or ErbB-2 receptors indicating there are sufficient ligands in vivo to
activate these receptors, and this work provides a basis for new target-based treatments of this disease.

Introduction and the ErbB-2/neu/HER-2 receptor. They are over-

expressed in 20-50% of human breast cancers and
their increased expression is associated with shortened
disease-free survival and overall survival [4, §5, 11,
12]. In addition, a truncated constitutively-active EGF
receptor, AEGFR which lacks 267 amino acids in
the receptor’s extracellular domain, has been repor-
ted in breast cancer and the c-FM S/colony stimulating
factor-1 receptor, which also signals through Ras, is
expressed in ~15% of breast cancers but not in nor-
mal breast tissue [13-15). While high expression of
the EGF and ErbB-2 receptors are poor prognostic
factors in breast cancer, it is not known whether suf-

Ras, the product of the ras proto-oncogene, alternates
between an active GTP-bound state and an inactive
GDP-bound state and transmits growth-promoting sig-
nals from the plasma membrane to the nucleus [1].
Activating mutations of codons 12, 59 or 61 of Ras
can lead to malignant transformation and are found
in a variety of human cancers, including about 90%
of pancreatic cancers, 50% of colon cancers, 50% of
thyroid cancers and 5% of breast cancers [1, 2].

The low percentage of breast cancers with activ-
ating ras mutations has led to the notion that Ras

does not play an important pathogenetic role in this
cancer [3). However, several growth factor receptors
which signal through Ras are overexpressed in breast
cancer suggesting that Ras may be activated in some
breast cancers through upstream mechanisms {4-10].
Two of these growth factor receptors are the EGF!

ficient ligands are present in breast tissue to activate
the receptors and which of the signal transduction
pathways activated by the receptors in cultured cells
is/are activated in primary cancers [4, 5, 11, 12]. In-
creased activity of MAP kinase has been reported in
breast cancer [16], but this enzyme can be activated by
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more than one mechanism and Ras activates more than
MAP kinase in transmitting pro-proliferative signals
[17,18].

We investigated the activation state of Ras in
20 human breast cancers and compared the data to
those obtained in seven normal breast samples, two
fibroadenomas and three cultured human breast cancer
cell lines, one without any known genetic mutations,
one which overexpresses the ErtbB-2 receptor and one
which has an activating K-ras mutation. When com-
pared to benign breast tissue, 11 of the 20 breast
cancers demonstrated a two to six-fold increase in
Ras activation and greater than a five-fold increase in
MAP kinase activity. All 11 of these cancers showed
increased expression of the EGF and/or ErhB-2 recept-
ors. The degree of Ras activation in the 11 cancers was
similar to that observed in the ErtbB-2-overexpressing
cell line treated with growth factors and in the cell line
with a K-ras mutation under all culture conditions.
As Ras is the target of new pharmacologic and viral
oncotherapeutic agents [19-23], this work provides

a rationale for novel treatment strategies of breast
cancer,

Methods

Harvesting of human breast tissue for measurement
of ras activation

Human breast tissue was obtained according to a pro-
cedure approved by the UCSD IRB. The pathologist
sectioned routine surgical specimens and applied tis-
sue scrapings to glass slides on dry ice; approximately
1 x 105 cells were obtained per slide, and cells were
frozen between 5 and 15 min of surgical resection.
Only samples which yielded > 80% epithelial cells
were analyzed further. Figure 1 shows representative
scrapings from normal and malignant tissue stained
histochemically and with an anti-keratin antibody. By
taking serial sections every Smin from a large tumor,
we showed that Ras activation is stable if cells are
frozen within 20 min of surgical resection. In addi-
tion, by comparing freshly harvested samples to frozen
samples, we showed that slides can be stored at —80°C
for several months without any change in Ras activ-
ation. There was no preselection of patient samples.
However, there was an inherent bias towards tumors
of > 1 cm in size because they were more likely to be
found quickly and provide sufficient material.

Figure 1. Characterization of cells analyzed for ras activation. Be-
nign breast tissue from patient number 1 (panel A) or malignant
tissue from patient 11 (panel B) and patient 21 (panel C) was sec-
tioned in the operating room and cells adherent to the scalpel blade
were applicd to glass slides on dry ice which werc either stained with
Wright's stain (panels A and B) or with an immunohistochemical
stain using an anti-keratin antibody. The scale bar in all three panels
is 50 pm. Note that the majority of cells are epithelial in origin, both
in the benign and malignant samples.

Measurement of Ras activation

Ras activation is defined as the percent of Ras mo-
lecules in the active GTP-bound state, i.e., (Ras-bound
GTP/Ras-bound GDP + Ras-bound GTP) x 100, and
was measured as previously described using enzyme-
based methods [24-27). Briefly, frozen cells from
two to three glass slides were lysed and either the rat
monoclonal antibody Y 13-259 (experimental sample)
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or nonspecific rat IgG (control sample) was added to
the lysate; antibody Y13-259 is a pan-Ras antibody
which recognizes all three forms of Ras, i.e., H-, K-
and N-Ras. GTP and GDP were eluted from the im-
munoprecipitated Ras by heating to 100°C for 3 min.
We have found that a 1h incubation of the primary
antibody (Y13-259) with cell extracts is sufficient

to quantitatively immunoprecipitate Ras [24]; mag-

nesium ion and high salt present in the buffer inhibit
GTP/GDP dissociation from Ras and RasGAP activ-
ity, respectively, and antibody Y13-259 is a Ras neut-
ralizing antibody which inhibits RasGEF and RasGAP
from interacting with Ras [28]. We have shown that
antibody Y13-259 is superior to antibody Y13-238
for imnmunoprecipitating Ras, even though the latter
antibody could, theoretically, precipitatc Ras bound
to its downstream effectors [29]. We have shown in
experiments where Ras was immunoprecipitated from
cells previously incubated with 32pQ, that the heat-
ing step quantitatively elutes GDP and GTP from Ras.
In addition, we have shown by high performance li-
quid chromatography that at neutral pH less then 5%
of GTP is destroyed when heated to 100°C for up to
10 min [24]. '

GTP was measured by converting it to ATP us-
ing the enzyme nucleoside diphosphate kinase (Sigma,
St. Louis, MO) and ATP was measured by the lu-
ciferase/luciferin system according to the following
reactions: :

nucleoside diphosphate kinase
GTP + ADP —> GDP + ATP
luciferase
ATP + luciferin —> oxyluciferin + AMP
+pyrophosphate + light

GDP was measured by converting it to GTP using pyr-
uvate kinase and phosphoenolpyruvate with the GTP
measured as described above:

pyruvate kinase
GDP + phosphoenolpyruvate — GTP + pyruvate.

Both assays are sensitive to 1fmol of nucleotide.
When GTP is measured in the second step of the GDP
assay, the sum of GTP + GDP is determined. Thus,
the amount of GTP in the sample must be subtracted
from the amount of GTP + GDP to yield the amount
of GDP.
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The amounts of GDP and GTP in the samples were
determined by subtracting the control sample from the
experimental sample and then comparing the results
with standard curves prepared with each sample set.
The data are gxpressed as fmol of GTP or GDP per
microgram of DNA.

Assessment for activating mutations in k-ras,
codon 12

DNA was isolated from frozen tissue or from par-
affin blocks using a commercial kit (Puregene, Min-
neapolis, MN) and activating mutations in K-ras,
codon 12 were detected by polymerase chain reaction
(PCR)/restriction fragment length polymorphism us-
ing ~400ng DNA template [30]. PCR amplification
of K-ras exon I sequences generates a DNA fragment
of 157 bp; digestion of wild type sequences with the
restriction enzyme BstNI yields fragments of 114, 29
and 14bp whereas sequences containing a codon 12
mutation, first or second position, are cleaved only
once resulting in fragments of 143 and 14bp [30].
A human pancreatic cancer with a K-ras, codon 12
mutation and the human breast cancer cell line MCF-7
containing wild type K-ras served as controls.

Immunohistochemistry

Paraffin-embedded tissue was incubated with a rab-
bit anti-EGF receptor polyclonal antibody (Santa Cruz
Biotechnology), a rabbit anti-ErbB-2 receptor poly-
clonal antibody (Dako), a mouse anti- AEGFR mono-
clonal antibody (provided by A. Jungbluth of the
Ludwig Institute, New York, NY), a rabbit anti-cFMS
receptor polyclonal antibody (Santa Cruz Biotechno-
logy), or a rabbit anti-keratin polyclonal antibody
(Dako). The anti-AEGFR antibody does not cross-
react with the full-length wild type EGF receptor
[27). Antibodies were detected using an alkaline phos-
phatase kit (Dako) and slides were counterstained with
nuclear fast red. Staining of > 20% of the cells on the
plasma membrane was considered positive. Immun-
ohistochemical analysis of EGF and ErbB-2 receptor
expression correlates well with results from north-
ern, Southern and western blotting and ligand-binding
assays [9, 11].

Measurement of MAP kinase activity

M AP kinase activity was measured by following phos-
phorylation Jf myelin basic protein in MAP kinase
immunoprecipitates as previously described [29]. Data
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are expressed as pmol/min/mg protein, and the assay
was linear with time and protein concentration.

Breast cancer cell lines

The human breast cancer cell lines MCF-7, MDA-
MB-453 and MDA-MB-231 were obtained from the
American type culture collection. Cells were grown
in D-MEM/F-12 medium containing 8% transferrin-
enriched calf serum and 2% fetal bovine serum (FBS).
For measurement of Ras and MAP kinase activa-
tion under logarithmic growth, cells were harvested
in mid-logarithmic phase and for growth factor stim-
ulation experiments, cells were starved for 72h in
D-MEM/F-12 without serum, and then incubated for
Smin with D-MEM/F-12 containing eithzr 20% FBS
or 100ng/m! EGF. In some experiments, the anti-
ErbB-2 monoclonal antibody 9G6 directed against an
external epitope (Santa Cruz Biotechnology) was ad-
ded at the time of transfer to serum-free medium.
At the time of harvest, cells were washed once with
ice-cold phosphate-buffered saline, scraped from the
plates and collected by centrifligation. Cell pellets
were frozen immediately on dry ice and keptat —80°C

until extracted for Ras activation or MAP kinase
activity.

Measurement of DNA and protein

DNA was measured by fluorescence using bisbenzim-

idazole [31] and protein was measured by the Bradford
method [32].

Statistical evaluation of data

Comparison of data groups was done by the two-tailed
Student t-test, with a p value of < 0.05 considered
significant.

Results

Clinical and pathological data

The clinical and pathological data of the patient cohort
are shown in Tables 1-3; Ras activation is included
to allow direct comparison between the tables and
Figure 2.

We obtained normal breast epithelial cells from
seven subjects: in four cases from a reduction mam-
moplasty with three of the patients previously having
had a cancer in the contralateral breast and in three
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Figure 2. Ras activation and EGF and ErbB-2 expression in patient
cohort. Cells from resected tissue were frozen rapidly on glass slides
as described in Figure 1; Ras was immunoprecipitated from the cells
and Ras aclivation was measured as described in Methods. Each
circle represents Ras activation of one patient in the study cohort and
is the mean of at least two independent measurements performed in
duplicate. The wide horizontal bars show the mean value for each
data set and, for the normal breast samples, the two narrow bars
show two standard deviations beyond the mean. Of the 20 cancers,
nine had Ras activation levels within two standard deviations of the
mean value of the normal breast samples (group A cancers) and 11
cancers had Ras activation levels greater than two standard devi-
ations above the mean of the normal samples (group B cancers);
the mean Ras activation of the group B cancers was significantly
different from the normal samples (p < 0.05). EGF and ErbB-2 re-
ceptor expression were assessed by immunohistochemical staining
of paraffin-embedded tissue as described in Methods: open circles,
negative staining for both receptors; filled circles, positive staining
for both receptors; circles with left-half filled, positive staining for

EGF receptor; circles with right-half filled, positive staining for
ErbB-2 receptor.

cases at the time of mastectomy fora cancer (Table 1),
in patient 3, the cancer was also analyzed (Table 3). In
addition, two fibroadenomas were analyzed (Table 1).

We studied breast cancers from 20 patients and
divided these patients into two groups based on Ras
activation (deScribed below). The age range and clin-
ical stage and tumor size, grade and histology were




Table 1. Clinical and pathological data: normal breast tissue and
fibroadenoma

Pt Age Histology Ras activation  Other

(%)
1 S0 nl breast 1.0 DCISin
other breast
2 4 nl breast 2.1 ca in other
breast, NOS
3. 60 nl breast 49 invasive ductal
ca in both breasts
4 68 nl breast 5.5 invasive lobular
ca in same breast
5 70 nl breast 5.6 invasive lobular
ca in same breast
6 52 nl breast 5.7 DCIS in
same breast
7 33 nl breast 6.8 breast reduction
19 fibroadenoma 3.6

9 70 fibroadenoma 6.4

Tables 1-3. All patients were operated on at UCSD Medical Center
as part of their routine clinical care. Estrogen and progesterone re-
ceptor status, the percentage of cells in S phase and chromosomal
ploidy were determined as part of the clinical management of the
patients according to standard procedures. For Ras activation meas-
urements, tissue was obtained according to a procedure approved
by the UCSD Institutional Review Board and was frozen within
minutes of resection and analyzed as described in Materials and
methods. Abbreviations are: nl breast: benign breast tissue with or
without fibrocystic changes; ca: cancer; DCIS: ductal carcinoma
in situ; LCIS: lobular carcinoma in situ; NOS: not otherwise spe-
cified; LN: lymph node; ER: estrogen receptor; PR: progesterone
receptor; ND: not determined; NA: not applicable, this refers to the
specific site from which the sample was taken for the Ras activation
measurement, not for the cancer listed under ‘other’.

similar in the two groups as were the percent cells
in § phase, chromosomal ploidy and estrogen and
progesterone receptor status (Tables 2 and 3).

Ras activation in human breast tissue

In the seven normal breast samples, Ras activation var-
ied between 1.0 and 6.8% with a mean value of 4.5%
(Table 1 and Figure 2). This degree of Ras activation is
similar to what we have found in other normal human
tissues including brain {26], peripheral nerve {25], and
ovarian epithelium (unpublished data). Ras activation
in the two fibroadenomas was similar to the normal
breast tissue (Table | and Figure 2).

Ras activation in the 20 breast cancers varied
between 1.5 and 29% (Tables 2 and 3 and Figure 2).
In nine of the cancers, Ras activation was within
two standard deviations of the mean of the normal
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breast samples (0.3-8.7%) and these nine breast can-
cers were combined as group A in Table 2 and Fig-
ure 2, two of these cancers were from a lymph node
metastasis with the primary lesion unavailable. In the
remaining 11 cancers, Ras activation exceeded two
standard deviations above the mean of the normal
samples and these cancers were combined as group
B in Table 3 and Figure 2. The mean Ras activation
for the 11 group B cancers was 17%, or approxim-
ately four times the mean Ras activation of the normal
breast samples; this degree of Ras activation was sig-
nificantly higher than in the normal breast samples
or in the Grdup A cancers (p < 0.05 for both com-
parisons). The increased Ras activation in the group
B cancers was unlikely due to a generalized increase
in Ras activation in the breast tissue of these patients
because normal breast tissue from patient 3 exhibited
similar Ras activation as in the other normal samples
(Table 1).

Assessment for activating mutations in k-ras,
codon 12

Increased Ras activation in the 11 group B cancers
could be secondary to an activating mutation in one
of the three ras genes. Activating ras mutations are
infrequent in breast cancer (~3%) but, when present,
the majority are in K-ras, codon 12 [2, 33, 34]. We
found no K-ras, codon 12 mutations in seven group
A cancers (patients 10, 11, 12, 14, 15, 16 and 17) or
eight group B cancers (patients 3,19, 20, 21, 22,23, 26
and 28), including cancers with Ras activation > 20%
(Figure 3 shows five representative samples). Results
are not available for two group A and three group B
cancers bccagse of insufficient tissue. As expected,
normal breast tissue and the fibroadenomas expressed
wild type ras.

Expression of the EGF, ErbB-2 and ¢-FMS receptors

Since none of the breast cancers examined showed a
K-ras mutation, increased Ras activation in these can-
cers could be secondary to overexpression of the EGF,
ErbB-2 or c-FMS receptor. Receptor expression was
assessed independently by two immunopathologists
without knowledge of the samples’ Ras activation.
Figure 4 shows representative examples of ErbB-2
and EGF receptor staining and cumulative results for
EGF and ErbB-2 receptor expression are shown in
Figure 2. All normal breast tissues were negative for
expression of the EGF receptor while two normal
breast samples expressed the ErbB-2 receptor (patients
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Table 2. Clinical and pathological data: breast cancers, group A
Pt Age Histology Tumor size and  Stage ER/PR  S-phase (%) Ras activation  Other
lymph nodes ploldy (%)
10 49 LCIS NA NA NA NA 1.5 Concurrent invasive
. lobular ca
it 53 Invasive ductal 2.2¢m 11B +/+ 8.5 1.9
/I0LN+ (T2NIMO) tetraploid
12 44 Invasive ductal 3cm 1B e 14.5 2.6
3111 LN+ (T2NIMO0) aneuploid
13 65  Iavasive lobular, 4cm 11IB +/+ 9.2 3.1 History of ipsilateral
inflammatory (T4NxM x) aneuploid medullary ca
14 56 Invasive ductal 15cem 1A +/+ 35 33 After neoadjuvant
2/11 LN+ (TINIMO) diploid chemotherapy
15 62 Metastatic ductal NA NA NA NA 4.3 Primary ca stage 11A,
in LN TINIMO
16 66  Invasive lobular  8.0cm 11B +/+ ND 6.1
(T3INOMO) aneuploid
17 56  Metastatic ductal NA NA NA NA 6.5 Primary ca stage 1V,
in LN TIN2MI
18 58 Invasive ductal 1.5cm 1 -] 14.8 8.5
(TINOMO) aneuploid
Table 3. Clinical and pathological data: Breast cancers, group B
Pt Age Histology Tumor size and  Stage ER/PR  S-phase (%) Rasactivation Other
lymph nodes ploidy (%)
19 52 Invasive ductal 39cm 1A +/+ 9.3 9.8
(T2ZNOM0) aneuploid
20 46  lavasive ductal 6.3cm HIA +/+ ND 9.9 After neoadjuvant
11 LN+ (T3INIMO) chemotherapy
21 62 Invasive ductal 45cm 11B -] - 8.8 12
(T2NOMD) aneuploid
22 44 High grade DCIS  0.9cm stage 0 NA NA 12
(Tis)
23 48 LCIS NA NA NA NA 13 Ipsilateral invasive
lobular ca, 3/13 LN+
24 34 Invasive ductal 33cm 11A -/- 1.1 16
(T2NOMO) diploid
25 41 Invasive lobular  7.0cm 1A +/+ 6.1 18
2/13LN+ (TINIMO) diploid
3 60 Invasive ductal 1.0cm 1 +/— 3.1 = 21 See patient 3, Table 1;
) (TINXMO) third primary ca
26 37 Invasive ductal 55cm v +/+ ND 23 Histoty of metastatic ca
8/15 LN+ (TINIM) : in contralateral breast
27 49 Invasive ductal 2.2cm 11B +/+ 9.3 24
212 LN+ (T2NIMO) aneuploid
28 72 Highgrade DCIS 2.0cm stage 0 (Tis) NA NA 29 Paget’s disease of

ipsilateral nipple




Figure 3. Assessment for activating mutations in K-ras, codon 12.
DNA was extracted from frozen or paraffin-embedded tissue and
assessed for activating K-ras, codon 12 mutations as described in
Methods. In each set of two lanes, the PCR product was incubated in
the absence (a) or presence (b) of the restriction enzyme BstNI. Wild
type K-ras yields a 114bp cleavage fragment while K-ras, codon
12 mutations yield a 143 bp cleavage fragment; smaller fragments
which were generated are not visualized. Lanes la & b, MCF-7
breast cancer cells which contain wild type Ras; lanes 2a & b, a
human pancreatic cancer which is heterozygous for a K-ras, codon
12 mutation; lanes 3a & b, patient 10; lanes 4a & b, patient 15;
lanes Sa & b, patient 23; lanes 6a & b, patient 26; and lanes Ta & b,
patient 28.

2 and 4, Table 1). In a recent study, 40 of 291 be-
nign breast samples expressed the ErbB-2 receptor
[35]. Neither of the two fibroadenomas expressed the
EGF or ErbB-2 receptor. None of the group A can-
cers expressed the EGF receptor while one expressed
the ErbB-2 receptor. Nine of the 11 group B cancers
expressed the EGF receptor and nine expressed the
ErbB-2 receptor. None of the samples expressed the
c-FMS receptor nor the constitutively-active AEGFR
although we found positive membrane staining for
these two receptors in human lymphoid tissue and in
the US7TMG glioblastoma cell line, respectively [27].

Thus, of the 11 Group B breast cancers with high
Ras activation, seven co-expressed both the EGF and
ErbB-2 receptor and the remaining four expressed
either the EGF or ErbB-2 receptor. This is in contrast
to the group A cancers with low Ras activation where
one of nine expressed the ErbB-2 receptor.

MAP kinase activity in human breas! tissue

To determine if high Ras activation led to high MAP
kinase activity, we measured MAP kinase activity
in samples with sufficicnt tissue (Figure 5). MAP
kinase activity in the seven normal breast samples,
one fibroadenoma, and three group A breast cancers
was 0.09 £ 0.05,0.18, and 0.20 £ 0.13 pmol/min/mg
protein, respectively. Although the mean MAP kinase
activity was approximately two-fold higher in the
breast cancers than in the normal samples, the dif-
ference between the two groups was not statistically
significant.

In six group B breast cancers, mean MAP kinase
activity was 0.52 £ 0.22 pmol/min/mg protein, which
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Figure 4. Immunohistochemical staining for EGF and ErbB-2 re-
ceptor expression. Paraffin-embedded tissue sections from the tu-
mors of paticnt number 28 (panels A and B) and patieat number
27 (pancl C) were fixed and stained with an anti-ErbB-2 receptor
antibody (panel A) or an anti-EGF receptor antibody (panels B and
C) as described in Methods. The scale bar in all three panels is
50um. Note in pancls A and B staining of the plasma membrane
without cytoplasmic staining.

was significantly higher (p < 0.01) than in normal tis-
suc. Therefore, samples with high Ras activation had
high MAP kinasc activity and the approximately four-
fold higher Ras activation in the group B cancers
comparcd to normal breast tissuc was reflected in a
greater than five-fold increase in MAP Kinase activity.
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Figure 5. MAP kinase activity in representative samples of pa-
tient cohort. MAP kinase was immunoprecipitated from frozen cells
oblained as described in Figure 1 and MAP kinase activity was
measured following phosphorylation of myelin basic protein. For
each sample, the data are the mean £SD of at least two independent

measurements perforrned in duplicate. The designation of group A
and B cancers is as in Figure 2.

Ras activation and map kinase activity in human
breast cancer cell lines

We examined the effect of growth factors on Ras
activation and MAP kinase activity in three well-
characterized breast cancer cell lines: MCF-7 cells
lacking known genetic mutations in Ras or growth
factor receptors; MDA-MB-453 cells which overex-
press the ErbB-2 receptor; and MDA-MB-231 cells
which contain an activating K-ras, codon 12 mutation.

In serum-containing medium, Ras activation was
4.5% in MCF-7 cells (Figure 6A), comparable to Ras
activation in normal breast tissue and the group A can-
cers; Ras activation decreased to 2% in serum-starved
MCF-7 cells with EGF or serum increasing Ras ac-
tivation by approximately four-fold. In MDA-MB-453
cells, Ras activation was high in serum-containing
medium (16%, Figure 6B), comparable to the group
B cancers, decreased to 8% under serum starvation
and increased by ~3.5- and ~1.5-fold on adding EGF
or serum, respectively. In addition to overexpress-
ing the ErbB-2 receptor, MDA-MB-453 cells also
express the ErbB-3 and ErbB-4 receptors [36, 37]
and, receptor heterodimerization between the ErbB-
2 receptor and the ErbB-3 or ErbB-4 receptor likely

explains the cells’ responsiveness to EGF and serum
[36-38). In MDA-MB-231 cells, Ras activation was
high, between 18 and 30%, changing little under all
conditions (Figure 6C). These cells, therefore, ex-
hibited similar Ras activation as in five of the 11
group B cancers. Thus, normal breast tissue and the
group A cancers were similar to cells without any ge-
netic mutations, and the group B cancers were similar
to ErbB-2-overexpressing cells treated with growth
factors and to cells with an activating K-ras mutation.
An anti-ErbB-2 antibody decreased Ras activation by
approximately 50% in serum-stimulated MCF-7 and
MDA-MB-453 cells but was without effect when the
cells were serum-starved (data not shown).

When we measured MAP kinase activity in the
cell lines, we found that in serum-starved MCF-
T cells enzyge activity was 0.08 pmol/min/mg pro-
tein and increased ~3.5-fold with EGF. The basal
activity was similar to normal breast tissue and the
EGF-stimulated activity was similar to activity in the
fibroadenomas and group A cancers. MAP Kkinase
activity in serum-starved MDA-MB-453 cells was
0.25 pmol/mg/min and increased ~1.8-fold with EGF;
the EGF-stimulated values are similar to activity in the
group B cancers. MAP kinase activity in the MDA-
MB-231 cells was high under basal conditions and was
not influenced by growth factors. Thus, as for Ras ac-
tivation, cells overexpressing the ErbB-2 receptor re-
quired growth factors for maximal MAP kinase stim-
ulation whereas MAP kinase activity was independent
of culture conditions in cells containing an activating
ras mutation. Moreover, normal breast tissue and the
group A cancers exhibited similar MAP kinase activ-
ity as MCF-7 cells and serum-starved MDA-MB-453
cells, and the group B cancers had similar MAP kinase

activity as growth factor-treated MDA-MB-453 cells
and the MDA-MB-231 cells.

Discussion

Using an enzyme-based method, we found Ras was
highly activated in 11 of 20 breast cancers com-
pared to normal breast tissue; MAP kinase activity
was significantly elevated in these 11 cancers com-
pared to normal tissue. During the course of these
studies, Sivaraman et al. reported an approximate 4.5-
fold increase in MAP kinase activity in 11 breast
cancers compared to six benign breast lesions [16].
When the group A and group B cancers in our
cohort are combined, we also find about a four-fold
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Figure 6. Ras activation in human breast cancer cell lines. Ras activation was measured as described in Figure 2 in three human breast cancer
cell lines: (A), MCF-7 cells with no known genetic mutations; (B). MDA-MB-453 cells which overexpress the ErbB-2 receptor; and (C),
MDA-MB-453 cells with a mutation in K-ras, codon 12. Cells were grown in serum-containing medium (log phase), in serum-free medium for
72k (serum starved), and in serum-free medium stimulated for S mim with either 20% fetal bovine serum (FBS) or 100 ng/m1 EGF (EGF). The
data are the mean = S.D. of at least three independent experiments performed in duplicate. Note the difference in the ordinate scale between

the MCF-7 cells and the MDA-MB-453 and MDA-MB-231 cells.

increase in MAP kinase activity relative to the normal
samples. The Sivaraman group did not assess Ras ac-
tivation or EGF or ErbB-2 receptor expression nor did
they measure MAP kinase activation in cultured cell
lines.

The mean Ras activation of 17% in the group B
cancers is likely to be of physiological significance
for the following reasons. First, as already mentioned,
increased Ras activation in these cancers was asso-
ciated with increased MAP kinase activity. Second,
we and others have found in cells transfected with a
mutated, constitutively-active Ras that Ras activation
is in the range of 15-30% [24, 25]. This seemingly
low degree of Ras activation is sufficient to transform
cells by several criteria including tumorigenicity in
nude mice [39, 40]. And third, we have found Ras

activation in the range of 20-30% in pancreatic and
colonic adenocarcinomas which have activating K-ras
mutations (unpublished observations); ras mutations
in pancrcatic and colonic carcinomas clearly play an
etiologic role in the development of these cancers [41,
42]. The importance of Ras activation to breast can-
cercell growth was recently underscored by Stevenson
etal. who showed that a dominant negative Shc inhib-
ited colony formation in several breast cancer cell lines
and that an activated Ras restored the cells growth
potential [43].

Nine of the 20 breast cancers expressed the EGF
receptor which is similar to that reported in the lit-
erature [7-9] but we did not find an inverse correl-
ation between EGF receptor expression and estrogen
receptor status as reported in other studies [7, 8). Ten
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of the 20 breast cancers expressed the ErbB-2 receptor
which is higher than generally reported but can be
explained by the relatively small sample size [4, 5,
12]. We did not find expression of the c-FMS receptor
or of the truncated constitutively-active EGF receptor,
AEGFR, in our patient cohort; the c-FMS receptor is
positive in only ~15% of breast cancers [14, 15] and
the prevalence of the AEGFR in breast cancer is not
yet well defined [13].

The data from the breast cancer cell lines related
well to the data in the primary breast samples. Spe-
cifically, Ras activation in MCF-7 cells, which have
no known genetic mutations in ras or in growth factor
receptors, was in the range of that found in normal
breast samples and the group A cancers, both in log-
arithmically growing cells and after EGF or serum
stimulation. In MDA-MB-453 cells, which overex-
press the ErbB-2 receptor, Ras activation was sim-
ilar to the group B cancers, both during logarithmic
growth and EGF or serum treatment. The MDA-MB-
231 cells, which have an activating K-ras mutation,
showed constitutively-elevated Ras activation unaf-
fected by growth conditions with activation levels in
the range of the group B cancers.

Seven of the 11 cancers with increased Ras ac-
tivation co-expressed the EGF and ErbB-2 receptors
and the other four cancers with high Ras activation
expressed one of these two receptors. The ErbB-2
receptor has no known specific ligand and it must
heterodimerize with the EGF, EtbB-3 or EtbB-4 re-
ceptor to be activated [44-46]. In the scven cancers
co-expressing the EGF and ErbB-2 receptors, it is
possible that the malignant tissue contained sufficient
ligand to induce heterodimerization of these two re-
ceptors. Heterodimers of EGF and ErbB-2 can bind
any of several growth factors including EGF, am-
phiregulin, betacellulin, transforming growth factor-
alpha (TGF-a) or heparin-binding EGF-related growth
factor, all of which may play a pathogenetic role in
breast cancer [47-50]. In the two cancers with high
Ras activation expressing only the ErbB-2 receptor,
it may have dimerized with the ErbB-3 or ErbB-4
receptor; the ErbB-3 receptor shows increased expres-
sion in some breast cancers and the ErbB-4 receptor
was found recently in nine of 12 breast cancers [51-
53]. Since only two cancers with high Ras activation
expressed the ErbB-2 receptor in the absence of the
EGF receptor, it did not seem indicated to assess all
20 of the malignant samples for expression of both
the ErbB-3 and ErbB-4 receptors. In the two can-
cers with high Ras activation expressing only the EGF

receptor, it is likely there was sufficiently high con-
centrations in the extracellular milieu of EGF, or some
other EGF-like ligand, to induce receptor dimerization
and, thereby, activate Ras. As is well known, over-
expression of either the ErbB-2 or EGF receptor is
associated with a poor clinical prognosis [4, 5, 7-9,
12] and our data suggest that the reason for a more
malignant phenotype of these tumors may be because
the cells are exposed to sufficient growth factors to
activate Ras and M AP kinase.

Herceptin, an anti-ErbB-2 monoclonal antibody is
the newest agent in the treatment of breast cancer and
its use is based partially on the premise that down-
stream targets of ErbB-2, e.g., Ras and MAP kinase,
are activated in breast cancer [54]. Our data with an
anti-ErbB-2 antibody provide mechanistic support for
Ras inhibition by herceptin. The finding that the an-
tibody inhibited Ras activation only in the presence
of growth factors may explain some of the variability
in patient responses to herceptin. Several Ras inhib-
itors are in clinical trials and in animal models they
are most effective in tumors exhibiting activated Ras,
although their mechanism of action likely includes in-
hibition of other Ras-related proteins [19-22, 55, 56].
In addition, an oncolytic reovirus has been described
which requires activated Ras for its tumorcidal prop-
erties [23]. By assessing Ras activation in tumors, it
should be possible to determine a priori, prior to ini-
tiating treatment, whether a particular cancer is likely
to respond to one of these new therapeutic approaches.
Since we and others have found ErbB-2 receptor ex-
pression in non-malignant breast tissue [35], and in
a cancer with low Ras activation, assessing receptor
expression may not be sufficient. Similarly, assessing
MAP kinase activity provides information only about
a single mitogenic pathway, whereas it is clear that
Ras transmits mitogenic signals through several dif-
ferent pathways [17, 18]. Moreover, the method for
assessing Ras activation lends itself well to automation
allowing rapid processing of multiple tumor samples.
Thus, assessing Ras activation in breast cancer may
have some advantages over assessing rcceptor expres-
sion or MAP kinase activity and may provide a basis
for new treatment strategies of this disease.
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